Связное множество

Связное множество

Курсив обозначает ссылку на этот словарь

# А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я


Б

  • База топологии — набор открытых множеств, такой, что любое открытое множество является объединением множеств из базы.

В

Г

  • Гомеоморфизм — биекция f, такая, что f и f − 1 непрерывны.
  • Гомеоморфные пространства — пространства, между которыми существует гомеоморфизм.
  • Гомотопия непрерывного отображения f\colon X\to Y есть непрерывное отображение F\colon[0,1]\times X\to Y, такое, что F(0,x) = f(x) для любого x\in X. Часто используется обозначение ft(x) = F(t,x), в частности f0 = f
  • Гомотопные отображения. Отображения f,g\colon X\to Y называются гомотопными или g\sim f если существует гомотопия ft такая, что f0 = f и f1 = g.
  • Гомотопическая эквивалентность топологических пространств X и Y есть пара непрерывных отображений f\colon X\to Y и g\colon Y\to X такая, что f\circ g\sim \mathrm{id}_Y и g\circ f\sim \mathrm{id}_X, здесь \sim обозначает гомотопическую эквивалентность отображений. В этом случае говорят, что X и Y гомотопически эквивалентны, или X с Y имеют один гомотопический тип.
  • Гомотопический инвариант — это характеристика пространства, которая сохраняется при гомотопической эквивалентности топологических пространств. То есть, если два пространства гомотопически эквиваленты, то они имеют ту же характеристику. Например: связанность, фундаментальная группа, эйлерова характеристика.
  • Гомотопический тип — см. гомотопическая эквивалентность.
  • Граница. Смотри относительная граница или граница многообразия.
  • Граница многообразия. Смотри многообразие.

Д

З

  • Замкнутое множество — дополнение к открытому.
  • Замкнутое отображение — такое отображение, что образ любого замкнутого множества замкнут.
  • Замыкание. Минимальное замкнутое множество, содержащее данное.

И

  • Индуцированная топология — топология на подмножестве A топологического пространства, открытыми множествами в которой считаются пересечения открытых множеств объёмлющего пространства с A.
  • Изолированная точка множества A топологического пространства X — такая точка a\in A, что пересечение некоторой её окрестности с A состоит из единственной точки a.

К

  • Категория Бэра
  • Компактное пространство
  • Компонента связности точки есть максимальное связное множество, содержащее эту точку.
  • Континуум — связное компактное хаусдорфово топологическое пространство.
  • Конус над топологическим пространством X (называемым основанием конуса) — пространство CX, получающееся из произведения X\times[0,\;1] стягиванием подпространства X\times\{0\} в одну точку, называемую вершиной конуса.
  • Край многообразия, см. многообразие
  • Кривая есть непрерывное отображение связного подмножества вещественной прямой.

Л

  • Линейно связное пространство. Пространство, в котором любую пару точек можно соединить кривой.
  • Локально компактное пространство. Пространство, в котором любая точка имеет компактную окрестность.
  • Локально связное пространство. Пространство, в котором любая точка имеет связную окрестность.
  • Локально стягиваемое пространство. Пространство, в котором любая точка имеет стягиваемую окрестность.
  • Локальный гомеоморфизм — отображение f:X\to Y топологических пространств, такое, что для каждой точки x\in X найдется окрестность Ux, которая посредством f отображается в Y гомеоморфно. Иногда в определение локальный гомеоморфизм автоматически включается требование f(X) = Y и, кроме того, отображение f предполагается открытым.

М

Н

  • Накрытие
  • Непрерывное отображение — такое отображение, при котором прообраз любого открытого множества открыт.
  • Нигде не плотное множество — множество, замыкание которого не содержит открытых множеств.

О

  • О́бласть — открытое связное подмножество топологического пространства.
  • Односвя́зное простра́нство — связное пространство, любое отображение окружности в которое гомотопно постоянному отображению.
  • Окрестность — открытая окрестность или множество, содержащее открытую окрестность.
  • Откры́тая окре́стность точки или множества — открытое множество, содержащее точку или множество.
  • Откры́тое мно́жество основное понятие общей топологии, смотри Топологическое пространство.
  • Откры́тое отображе́ние — такое отображение, что образ любого открытого множества открыт.
  • Относи́тельная грани́ца. Пересечение замыкания подмножества топологического пространства с замыканием его дополнения. Граница множества E обычно обозначается \partial E.
  • Относи́тельная топология — то же, что Индуцированная топология.
  • Относи́тельно компа́ктное мно́жество — подмножество M топологического пространства T называется относительно компактным или предкомпа́ктным если его замыкание компактно.

П

  • Паракомпактное пространство — топологическое пространство, из любого открытого покрытия которого можно выделить локально конечное подпокрытие (то есть такое, что для любой точки можно найти окрестность пересекающуюся с конечным числом элементов этого подпокрытия).
  • Плотное множество
  • Подпокрытие покрытия {Vα}, \alpha\in A — это покрытие {Vβ}, где \beta\in B\subset A.
  • Подпространство — подмножество топологического пространства, снабжённое индуцированной топологией.
  • Покрытие подмножества или пространства X — это представление его в виде объединения множеств {Vα}, \alpha\in A, точнее это набор множеств {Vα}, \alpha\in A такой что X\subset \bigcup_{\alpha\in A} V_\alpha. Чаще всего рассматривают открытые покрытия, то есть предпологают что все {Vα} являются откытыми множествами.
  • Предбаза — семейство Y открытых подмножеств топологпческого пространства X такое, что совокупность всех множеств, являющихся пересечением конечного числа элементов Y, образует базу X.
  • Предельная точка подмножества A топологического пространства X — такая точка a\in X, что в любой её выколотой окрестности с A есть хотя бы одна точка из A.
  • Производное множество — совокупность всех предельных точек.

Р

С

  • Связное пространство. Пространство, которое невозможно разбить на два непустых непересекающихся (<=> dis, дизъюнктное) открытых множества.
  • Сепарабельное пространство — топологическое пространство, в котором имеется счётное всюду плотное множество.
  • Стягиваемое пространство — пространство, гомотопически эквивалентное точке.

T

  • Топологический инвариант — характеристика пространства, которая сохраняется при гомеоморфизме. То есть если два пространства гомеоморфны то они имеют ту же характеристику. Например: компактность, связанность, фундаментальная группа, Эйлерова характеристика.
  • Топологическое пространство
  • Топология компактной сходимости. Топология, заданная на множестве непрерывных вещественных функций, определяемая семейством преднорм p_n(x)=\sup_{-n\leq t\leq t}|x(t)|, n\in\mathbb N, называется топологией компактной сходимости.
  • Топология равномерной сходимости. Пусть на векторном пространстве L(K) непрерывных функций f на компактном топологическом пространстве K определена норма ||f||=\sup_{x\in K}|f(x)|. Топология, порождённая такой метрикой называтеся топологией равномерной сходимости.
  • Точка накопления множества M — точка топологического пространства, в любой проколотой окрестности которой содержится хотя бы одна точка M.
  • Точка полного накопления множества M ― точка x\in M в топологическом пространстве X такая, что пересечение M с любой окрестностью x имеет мощность ту же, что и все множество M.
  • Точка прикосновения подмножества M топологического пространства — точка, любая окрестность которой содержит хотя бы одну точку из M. Множество всех точек прикосновения совпадает с замыканием \overline{M}.

Ф

Х

  • Хаусдорфово пространство. Топологическое пространство X называется хаусдорфовым, если любые две различных точки x и y из X обладают непересекающимися окрестностями.

Литература

  • Бурбаки Н. Элементы математики. Общая топология. Основные структуры.
  • Александров П. С. Введение в теорию множеств и общую топологию. М.: ГИИТЛ, 1948
  • Келли Дж. Л. Общая топология. М.: Наука, 1968
  • О. Я. Виро, О. А. Иванов, В. М. Харламов и Н. Ю. Нецветаев. Задачный учебник по топологии

Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Полезное


Смотреть что такое "Связное множество" в других словарях:

  • Связное множество — множество, любые две точки которого можно соединить непрерывной кривой, принадлежащей этому же множеству …   Начала современного естествознания

  • Связное множество — (математическое)         точечное множество, состоящее как бы из одного куска, т. е. такое, что при любом его разбиении на два непресекающихся непустых подмножества одно из них содержит точку, предельную для другого (см. Предельная точка). На… …   Большая советская энциклопедия

  • СВЯЗНОЕ МНОЖЕСТВО — подмножество объемлющего множества, в к ром определено понятие связности и в смысле к рого само подмножество связно. Напр., С. м. пространства действительных чисел являются выпуклые множества и только они; С. м. графа является такое множество, в… …   Математическая энциклопедия

  • Множество мандельброта — В математике множество Мандельброта это фрактал, определённый как множество точек на комплексной плоскости, для которых итеративная последовательность …   Википедия

  • Множество второй категории — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш …   Википедия

  • Множество первой категории — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш …   Википедия

  • Связное пространство — Множество A связно, а …   Википедия

  • Связное двоеточие — Связное двоеточие, или двоеточие Александрова  наиболее простой содержательный пример нехаусдорфова топологического пространства в общей топологии. Содержание 1 Определение 2 Описание 3 Свойс …   Википедия

  • Массивное множество — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш …   Википедия

  • Несвязное множество — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»