Сферическая теорема Пифагора

Сферическая теорема Пифагора
Прямоугольный сферический треугольник с гипотенузой c, катетами a и b и прямым углом C.

Сферическая теорема Пифагора — теорема, устанавливающая соотношение между сторонами прямоугольного сферического треугольника.

Содержание

Формулировка и доказательство

Сферическая теорема Пифагора формулируется следующим образом[1]:

« Косинус гипотенузы прямоугольного сферического треугольника равен произведению косинусов его катетов. »
Рисунок к доказательству сферической теоремы Пифагора.

Доказательство проведём с помощью трёхгранного угла[1] OA1B1C1 со сторонами (лучами) OA1, OB1, OC1 и вершиной в точке O, плоские углы A1OC1 и C1OB1 которого равны катетам b и a данного треугольника, плоский угол A1OB1 равен его гипотенузе c, двугранный угол между гранями A1OC1 и C1OB1 равен 90 градусов, а остальные два двугранных угла равны соответствующим углам сферического прямоугольного треугольника. Этот трёхгранный угол пересечен плоскостью A1B1C1, перпендикулярной лучу OB1. Тогда углы A1C1O и A1C1B1 будут прямыми.

Заметим, что

\frac {OB_1}{OA_1} = \cos \angle A_1OB_1 = \cos c,\,
\frac {OC_1}{OA_1} = \cos \angle A_1OC_1 = \cos b,\,
\frac {OB_1}{OC_1} = \cos \angle C_1OB_1 = \cos a.\,

Отсюда

 \cos c = \frac {OB_1}{OA_1} = \frac {OB_1}{OC_1} \cdot \frac {OC_1}{OA_1} = \cos a \cos b.\,

Что и требовалось доказать.

Если считать, что сферическая теорема косинусов уже доказана, формулу для сферической теоремы Пифагора можно сразу получить из неё, записав сферическую теорему косинусов для гипотенузы данного прямоугольного сферического треугольника и просто подставив в получившееся выражение угол 90 градусов, косинус которого равен нулю.

Следствия и применение

При радиусе сферы, стремящемся к бесконечности, сферическая теорема Пифагора переходит в теорему Пифагора планиметрии. Поэтому, поскольку радиус Земли велик, при небольших расстояниях прямоугольные треугольники на поверхности Земли (например, используемые для измерения расстояний и углов на местности) практически подчиняются теореме Пифагора планиметрии[2], тогда как для больших расстояний, сравнимых с радиусом Земли, уже необходимо применять сферическую теорему Пифагора.

С применением сферической теоремы Пифагора можно получить формулы для разности долгот и расстояния между точками земной поверхности, а, следовательно, и соответствующие формулы для расстояний и координат точек на небесной сфере.

Из сферической теоремы Пифагора следует, что в прямоугольном сферическом треугольнике количество сторон, меньших 90 градусов, нечётно, а больших — чётно[1]. Поэтому если оба катета прямоугольного сферического треугольника больше 90 градусов, то его гипотенуза меньше 90 градусов, то есть в этом случае гипотенуза короче каждого из двух катетов — положение, невозможное для прямоугольного треугольника на плоскости.

История

Сферическая теорема Пифагора была известна ещё Ал-Бируни, который вместе с тем не знал сферической теоремы косинусов, поэтому применил сферическую теорему Пифагора и теорему синусов для решения как минимум двух задач: определения разности долгот двух пунктов на поверхности Земли по их широтам и расстоянию между ними и определения расстояния между двумя пунктами на поверхности Земли по их широтам и долготам[3]:81.

См. также

Примечания

  1. 1 2 3 Степанов Н.Н. Сферическая теорема Пифагора // Сферическая тригонометрия. — М.—Л.: ОГИЗ, 1948. — С. 42—44. — 154 с.
  2. John McCleary Geometry from a differentiable viewpoint. — Cambridge University Press, 1994. — С. 6. — 308 с.
  3. Розенфельд Б.А., Рожанская М.М. Астрономический труд Ал-Бируни «Канон Мас'уда» // Историко-астрономические исследования. — М.: Наука, 1969. — В. X. — С. 63—96.

Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Полезное


Смотреть что такое "Сферическая теорема Пифагора" в других словарях:

  • Теорема Пифагора — Теорема Пифагора  одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. Содержание 1 …   Википедия

  • Сферическая тригонометрия — Сферическая тригонометрия  раздел тригонометрии, в котором изучаются зависимости между величинами углов и длинами сторон сферических треугольников. Применяется для решения различных геодезических и астрономических задач. Содержание 1 История …   Википедия

  • Теорема синусов (сферическая геометрия) — Сферическая теорема синусов устанавливает пропорциональность между синусами сторон a, b, c и синусами противолежащих этим сторонам углов A, B, C сферического треугольника: Сферическая теорема синусов является аналогом плоской теоремы синусов и… …   Википедия

  • Теорема Лежандра (сферическая тригонометрия) — Теорема Лежандра в сферической тригонометрии позволяет упростить решение сферического треугольника, если известно, что его стороны достаточно малы по сравнению с радиусом сферы, на которой он расположен. Формулировка …   Википедия

  • Теорема косинусов — Теорема косинусов  теорема евклидовой геометрии, обобщающая теорему Пифагора: Для плоского тре …   Википедия

  • Теоремы косинусов (сферическая геометрия) — Сферический треугольник. Первая и вторая сферические теоремы косинусов устанавливают соотношения между сторонами и противолежащими им углами сферического треугольника …   Википедия

  • Формула пяти элементов (сферическая геометрия) — Рисунок к формуле пяти элементов и её доказательству с помощью проекций. Формула пяти элементов в сферической тригоно …   Википедия

  • Эксцесс (сферическая тригонометрия) — Сферический треугольник Эксцесс сферического треугольника, или сферический избыток величина в сф …   Википедия

  • Косинусов теорема — Теорема косинусов обобщение теоремы Пифагора. Квадрат стороны треугольника равен сумме квадратов двух других его сторон без удвоенного произведения этих сторон на косинус угла между ними. Для плоского треугольника со сторонами a,b,c и углом α… …   Википедия

  • Решение треугольников — (лат. solutio triangulorum) исторический термин, означающий решение главной тригонометрической задачи: по известным данным о треугольнике (стороны, углы и т. д.) найти остальные его характеристики[1]. Треугольник может располагаться на… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»