Непрерывный функционал

Непрерывный функционал

Непреры́вное отображе́ние или непрерывная функция — это такое отображение, у которого небольшие изменения аргумента приводят к небольшим изменениям значения отображения.

Это понятие определятся немного по-разному в различных разделах математики; наиболее общее определение используется в общей топологии.

Содержание

Определения

Непрерывная числовая функция

  • Пусть дана функция f\colon M\subset\R\to\R, и a\in M. Тогда говорят, что f непрерывна в точке a и пишут f \in C(a), если \forall \varepsilon > 0\; \exists \delta > 0\; \forall x\in M
    (|x-a| < \delta) \Rightarrow (|f(x)-f(a)| < \varepsilon).
  • Пусть дано подмножество N\subset M. Тогда говорят, что f непрерывна на N и пишут f\in C(N), если
    \forall a \in N\quad f\in C(a).

Непрерывное отображение из Rm в Rn

Обобщая одномерный случай, функция f\colon M \subset \mathbb{R}^m \to \mathbb{R}^n называется непрерывной в точке a \in M, если \forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \in M

\bigl(\|x-a\|_m < \delta\bigr) \Rightarrow \bigl(\|f(x) - f(a)\|_n < \varepsilon\bigr),

где

\|x\|_k \equiv \sqrt{\sum\limits_{i=1}^k x_i^2},\quad x = (x_1,\ldots,x_k)^{\top} \in \mathbb{R}^k — евклидова норма в \mathbb{R}^k.

Непрерывное отображение метрических пространств

В предыдущем определении наличие операции вычитания, точнее линейной структуры, в евклидовых пространствах не играет принципиальной роли. Достаточно лишь иметь возможность измерять расстояния. Множества, на которых указан способ измерять расстояния, называются метрическими пространствами. Отображение f\colon X \to Y метрического пространства (XX) в метрическое пространство (YY) называется непрерывным в точке a, если \forall \varepsilon > 0 \; \exists \delta > 0 \;
\forall x \in X

\Big(\rho_X(x,a) < \delta\Big) \Rightarrow \Big( \rho_Y \bigl(f(x), f(a)\bigr)< \varepsilon \Big).

Непрерывное отображение топологических пространств

В предыдущих определениях важно не наличие точной меры расстояния, а лишь понятия близости. Непрерывное отображение переводит близкие точки в близкие. Множество, в котором указан некоторый набор подмножеств \mathcal{T}, позволяющий говорить о близких точках, называется топологическим пространством. Отображение f\colon X \to Y топологического пространства (X,\mathcal{T}_X) в топологическое пространство (Y,\mathcal{T}_Y) называется непрерывным, если прообраз любого открытого множества открыт:

\forall V \in \mathcal{T}_Y \quad f^{-1}(V) \in \mathcal{T}_X.

Связанные определения

Если функция не является непрерывной в точке a, то говорят, что она в ней разры́вна и пишут f \not\in C(a). Согласно замечанию выше функция может быть разрывной только в предельной точке области определения, и справедливо одно из двух:

  1. Либо предел \lim\limits_{x\to a} f(x) не существует;
  2. Либо он существует, но \lim\limits_{x\to a} f(x) \neq f(a).


Пусть существует \lim\limits_{x\to a} f(x), но a \not\in M или \lim\limits_{x\to a} f(x) \neq f(a). Тогда a называется то́чкой устрани́мого разры́ва. Положив f(a) = \lim\limits_{x\to a} f(x), можно добиться непрерывности функции в этой точке. Такое изменение значения функции в точке, превращающее функцию в непрерывную в этой точке, называется доопределением по непрерывности.

Пусть не сущестует двусторонний предел \lim\limits_{x\to a} f(x), но существуют конечные (и различные) односторонние пределы \lim\limits_{x\to a-} f(x) и \lim\limits_{x\to a+} f(x). Тогда f\not\in C(a), и a называется то́чкой разры́ва пе́рвого ро́да.

Если f\not\in C(a), и a не является точкой устранимого разрыва или разрыва первого рода, то есть хотя бы один односторонний предел не существует или бесконечен, то она называется то́чкой разры́ва второ́го ро́да.

Свойства

\left(a \in M\setminus M'\right) \Rightarrow \bigl(f\in C(a)\bigr).
  • В предельной точке области определения непрерывность функции эквивалентна существованию предела, равного значению функции в точке:
\bigl( a\in M \cap M' \bigr) \Rightarrow \bigl( f\in C(a) \Leftrightarrow \lim\limits_{x \to a}f(x) = f(a)\bigr).

Вещественнозначаные функции

  • Функция сохраняет знак в окрестности точки непрерывности. Пусть f\in C(a),\; f(a) > 0. Тогда существует окрестность U(a) такая, что
\forall x \in U(a)\cap M\quad f(x) > 0.

Примеры

f(x) = \left\{
\begin{matrix}
\frac{\sin x}{x}, & x \neq 0 \\
0, & x = 0
\end{matrix}
\right.

непрерывна в любой точке x \neq 0. Точка x = 0 является точкой устранимого разрыва, ибо

\lim\limits_{x \to 0} f(x) = \lim\limits_{x \to 0} \frac{\sin x}{x} = 1 \neq 0 = f(0).
f(x) = \sgn x = \left\{
\begin{matrix}
-1, & x < 0 \\
0, & x = 0 \\
1, & x > 0
\end{matrix}
\right.,\; x\in \mathbb{R}

непрерывна в любом x \neq 0. Точка x = 0 является точкой разрыва первого рода, ибо

\lim\limits_{x \to 0-}f(x) = -1 \neq 1 = \lim\limits_{x \to 0+}f(x)
.

непрерывна в любом x \neq 0.

Вариации и бобщения

Односторнняя непрерывность

  • Пусть дана функция f:M\subset \mathbb{R} \to \mathbb{R}, и a\in M. Тогда говорят, что f непреры́вна спра́ва в точке a, если \forall \varepsilon > 0\; \exists \delta > 0\; \forall x\in M
    (|x-a| < \delta \wedge x\ge a) \Rightarrow (|f(x)-f(a)| < \varepsilon).
  • Говорят, что f непреры́вна сле́ва в точке a, если \forall \varepsilon > 0\; \exists \delta > 0\; \forall x\in M
    (|x-a| < \delta \wedge x\le a) \Rightarrow (|f(x)-f(a)| < \varepsilon).


Замечания

  • Функция непрерывна тогда и только тогда, когда она непрерывна одновременно справа и слева.
  • Функция непрерывна справа в предельной точке области определения тогда и только тогда, когда существует правосторонний предел
\lim\limits_{x \to a+}f(x) = f(a).
  • Функция непрерывна слева в предельной точке области определения тогда и только тогда, когда существует левосторонний предел
(\lim\limits_{x \to a-}f(x) = f(a)).
  • Все базовые свойства непрерывных функций переносятся на односторонне непрерывные функции.

Примеры

  • Функция
f(x) = \left\{
\begin{matrix}
1,& x \geqslant 0\\
0, & x < 0
\end{matrix}
\right.,\quad x\in \mathbb{R}

непрерывна справа (но не слева) в точке x = 0. Во всех других точках она непрерывна.


См. также


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Полезное


Смотреть что такое "Непрерывный функционал" в других словарях:

  • НЕПРЕРЫВНЫЙ ФУНКЦИОНАЛ — непрерывный оператор, отображающий топологическое и, как правило, векторное пространство в или . Поэтому определение и признаки непрерывности произвольного оператора сохраняются с соответствующей спецификацией и для функционалов. Так, напр.: 1)… …   Математическая энциклопедия

  • Непрерывный линейный оператор — Линейный непрерывный оператор дейсвтующий из X в Y( ) это линейное отображение из X в Y обладающее свойством непрерывности. Термин линейный непрерывный оператор обычно употребляют в случае, когда . Если …   Википедия

  • Функционал — У этого термина существуют и другие значения, см. Функционал (значения). Функционал  это отображение, заданное на произвольном множестве и имеющее числовую область значений: обычно множество вещественных чисел или комплексных чисел …   Википедия

  • Линейный непрерывный оператор — Линейный непрерывный оператор, действующий из в ( ) это линейное отображение из в , обладающее свойством непрерывности. Термин линейный непрерывный оператор обычно употребляют в случае, когда . Если …   Википедия

  • ХАРАКТЕРИСТИЧЕСКИЙ ФУНКЦИОНАЛ — аналог понятия характеристической функции, используемый в бесконечномерном случае. Пусть непустое множество, Г векторное пространство определенных на действительных функций, наименьшая алгебра подмножеств относительно к рой измеримы все функции… …   Математическая энциклопедия

  • Линейный функционал — Линейный функционал  функционал, обладающий свойством линейности по своему аргументу: где   линейный функционал, и   функции из его области определения,   число (к …   Википедия

  • ЛИНЕЙНЫЙ ФУНКЦИОНАЛ — линейная форма, на векторном пространстве Lнад полем k отображение такое, что .для всех Понятие Л. ф., будучи важным специальным случаем понятия линейного оператора, является одним из основных в линейной алгебре и играет значительную роль в… …   Математическая энциклопедия

  • НЕКОРРЕКТНЫЕ ЗАДАЧИ — точнее некорректно поставленные задачи, задачи, для к рых не удовлетворяется хотя бы одно из приводимых ниже условий, характеризующих корректно поставленные задачи [короче корректные задачи (к. з.)]. Задача определения решения из метрич.… …   Математическая энциклопедия

  • Однородная функция — степени   числовая функция такая, что для любого и выполняется равенство: причём называют порядком однородности. Различают также положительно однородные функции, для которых равенство …   Википедия

  • Сопряжённый оператор — Содержание 1 Общее линейное пространство 2 Топологическое линейное пространство …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»