Непрерывные функции

Непрерывные функции

Непреры́вное отображе́ние или непрерывная функция — это такое отображение, у которого небольшие изменения аргумента приводят к небольшим изменениям значения отображения.

Это понятие определятся немного по-разному в различных разделах математики; наиболее общее определение используется в общей топологии.

Содержание

Определения

Непрерывная числовая функция

  • Пусть дана функция f\colon M\subset\R\to\R, и a\in M. Тогда говорят, что f непрерывна в точке a и пишут f \in C(a), если \forall \varepsilon > 0\; \exists \delta > 0\; \forall x\in M
    (|x-a| < \delta) \Rightarrow (|f(x)-f(a)| < \varepsilon).
  • Пусть дано подмножество N\subset M. Тогда говорят, что f непрерывна на N и пишут f\in C(N), если
    \forall a \in N\quad f\in C(a).

Непрерывное отображение из Rm в Rn

Обобщая одномерный случай, функция f\colon M \subset \mathbb{R}^m \to \mathbb{R}^n называется непрерывной в точке a \in M, если \forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \in M

\bigl(\|x-a\|_m < \delta\bigr) \Rightarrow \bigl(\|f(x) - f(a)\|_n < \varepsilon\bigr),

где

\|x\|_k \equiv \sqrt{\sum\limits_{i=1}^k x_i^2},\quad x = (x_1,\ldots,x_k)^{\top} \in \mathbb{R}^k — евклидова норма в \mathbb{R}^k.

Непрерывное отображение метрических пространств

В предыдущем определении наличие операции вычитания, точнее линейной структуры, в евклидовых пространствах не играет принципиальной роли. Достаточно лишь иметь возможность измерять расстояния. Множества, на которых указан способ измерять расстояния, называются метрическими пространствами. Отображение f\colon X \to Y метрического пространства (XX) в метрическое пространство (YY) называется непрерывным в точке a, если \forall \varepsilon > 0 \; \exists \delta > 0 \;
\forall x \in X

\Big(\rho_X(x,a) < \delta\Big) \Rightarrow \Big( \rho_Y \bigl(f(x), f(a)\bigr)< \varepsilon \Big).

Непрерывное отображение топологических пространств

В предыдущих определениях важно не наличие точной меры расстояния, а лишь понятия близости. Непрерывное отображение переводит близкие точки в близкие. Множество, в котором указан некоторый набор подмножеств \mathcal{T}, позволяющий говорить о близких точках, называется топологическим пространством. Отображение f\colon X \to Y топологического пространства (X,\mathcal{T}_X) в топологическое пространство (Y,\mathcal{T}_Y) называется непрерывным, если прообраз любого открытого множества открыт:

\forall V \in \mathcal{T}_Y \quad f^{-1}(V) \in \mathcal{T}_X.

Связанные определения

Если функция не является непрерывной в точке a, то говорят, что она в ней разры́вна и пишут f \not\in C(a). Согласно замечанию выше функция может быть разрывной только в предельной точке области определения, и справедливо одно из двух:

  1. Либо предел \lim\limits_{x\to a} f(x) не существует;
  2. Либо он существует, но \lim\limits_{x\to a} f(x) \neq f(a).


Пусть существует \lim\limits_{x\to a} f(x), но a \not\in M или \lim\limits_{x\to a} f(x) \neq f(a). Тогда a называется то́чкой устрани́мого разры́ва. Положив f(a) = \lim\limits_{x\to a} f(x), можно добиться непрерывности функции в этой точке. Такое изменение значения функции в точке, превращающее функцию в непрерывную в этой точке, называется доопределением по непрерывности.

Пусть не сущестует двусторонний предел \lim\limits_{x\to a} f(x), но существуют конечные (и различные) односторонние пределы \lim\limits_{x\to a-} f(x) и \lim\limits_{x\to a+} f(x). Тогда f\not\in C(a), и a называется то́чкой разры́ва пе́рвого ро́да.

Если f\not\in C(a), и a не является точкой устранимого разрыва или разрыва первого рода, то есть хотя бы один односторонний предел не существует или бесконечен, то она называется то́чкой разры́ва второ́го ро́да.

Свойства

\left(a \in M\setminus M'\right) \Rightarrow \bigl(f\in C(a)\bigr).
  • В предельной точке области определения непрерывность функции эквивалентна существованию предела, равного значению функции в точке:
\bigl( a\in M \cap M' \bigr) \Rightarrow \bigl( f\in C(a) \Leftrightarrow \lim\limits_{x \to a}f(x) = f(a)\bigr).

Вещественнозначаные функции

  • Функция сохраняет знак в окрестности точки непрерывности. Пусть f\in C(a),\; f(a) > 0. Тогда существует окрестность U(a) такая, что
\forall x \in U(a)\cap M\quad f(x) > 0.

Примеры

f(x) = \left\{
\begin{matrix}
\frac{\sin x}{x}, & x \neq 0 \\
0, & x = 0
\end{matrix}
\right.

непрерывна в любой точке x \neq 0. Точка x = 0 является точкой устранимого разрыва, ибо

\lim\limits_{x \to 0} f(x) = \lim\limits_{x \to 0} \frac{\sin x}{x} = 1 \neq 0 = f(0).
f(x) = \sgn x = \left\{
\begin{matrix}
-1, & x < 0 \\
0, & x = 0 \\
1, & x > 0
\end{matrix}
\right.,\; x\in \mathbb{R}

непрерывна в любом x \neq 0. Точка x = 0 является точкой разрыва первого рода, ибо

\lim\limits_{x \to 0-}f(x) = -1 \neq 1 = \lim\limits_{x \to 0+}f(x)
.

непрерывна в любом x \neq 0.

Вариации и бобщения

Односторнняя непрерывность

  • Пусть дана функция f:M\subset \mathbb{R} \to \mathbb{R}, и a\in M. Тогда говорят, что f непреры́вна спра́ва в точке a, если \forall \varepsilon > 0\; \exists \delta > 0\; \forall x\in M
    (|x-a| < \delta \wedge x\ge a) \Rightarrow (|f(x)-f(a)| < \varepsilon).
  • Говорят, что f непреры́вна сле́ва в точке a, если \forall \varepsilon > 0\; \exists \delta > 0\; \forall x\in M
    (|x-a| < \delta \wedge x\le a) \Rightarrow (|f(x)-f(a)| < \varepsilon).


Замечания

  • Функция непрерывна тогда и только тогда, когда она непрерывна одновременно справа и слева.
  • Функция непрерывна справа в предельной точке области определения тогда и только тогда, когда существует правосторонний предел
\lim\limits_{x \to a+}f(x) = f(a).
  • Функция непрерывна слева в предельной точке области определения тогда и только тогда, когда существует левосторонний предел
(\lim\limits_{x \to a-}f(x) = f(a)).
  • Все базовые свойства непрерывных функций переносятся на односторонне непрерывные функции.

Примеры

  • Функция
f(x) = \left\{
\begin{matrix}
1,& x \geqslant 0\\
0, & x < 0
\end{matrix}
\right.,\quad x\in \mathbb{R}

непрерывна справа (но не слева) в точке x = 0. Во всех других точках она непрерывна.


См. также


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Полезное


Смотреть что такое "Непрерывные функции" в других словарях:

  • НЕПРЕРЫВНЫЕ АНАЛОГИ ИТЕРАЦИОННЫХ МЕТОДОВ — непрерывные модели, позволяющие исследовать вопросы существования решений нелинейных уравнений, проводить с помощью развитого аппарата непрерывного анализа предварительные исследования сходимости и оптимальности итерационных методов, получать… …   Математическая энциклопедия

  • Тригонометрические функции — Запрос «sin» перенаправляется сюда; см. также другие значения. Запрос «sec» перенаправляется сюда; см. также другие значения. Запрос «Синус» перенаправляется сюда; см. также другие значения …   Википедия

  • Изменение функции —         вариация функции, одна из важнейших характеристик функции действительного переменного. Пусть функция f (x) задана на некотором отрезке [a, b]; её изменением, или полным изменением, на этом отрезке называется верхняя грань сумм         … …   Большая советская энциклопедия

  • История понятия функции — В математике, числовая функция  это функция, области определения и значений которой являются подмножествами числовых множеств  как правило, множества действительных чисел или множества комплексных чисел . Содержание 1 График функции …   Википедия

  • Носитель функции — Носитель функции  замыкание множества, на котором функция отлична от нуля. Содержание 1 Носитель классической функции 1.1 Компактный носитель …   Википедия

  • Теорема о свойстве Дарбу для непрерывной функции — Теорема о свойстве Дарбу (Д свойстве) для непрерывной функции в математическом анализе утверждает, что непрерывный образ отрезка есть отрезок. Содержание 1 Формулировка 2 Замечания …   Википедия

  • Гармонические функции —         функции от n переменных (n ≥ 2), непрерывные в некоторой области вместе с частными производными первого и второго порядков и удовлетворяющие в этой области дифференциальному уравнению Лапласа          …   Большая советская энциклопедия

  • ОБОБЩЕННЫЕ ПОЧТИ ПЕРИОДИЧЕСКИЕ ФУНКЦИИ — классы функций, являющиеся различными обобщениями почти периодич. функций. Каждый из них обобщает какую то из сторон в определениях Бора почти периодических функций и Бохнера почти периодических функций. В этих определениях встречаются следующие… …   Математическая энциклопедия

  • ВАРИАЦИЯ ФУНКЦИИ — числовая характеристика функции одного действительного переменного, связанная с ее дифференциальными свойствами. 1) Пусть функция действительного переменного х, заданная на отрезке ; ее вариация есть точная верхняя грань сумм вида где… …   Математическая энциклопедия

  • Обобщённые функции —         математическое понятие, обобщающее классическое понятие Функции. Потребность в таком обобщении возникает во многих физических и математических задачах. Понятие О. ф., с одной стороны, даёт возможность выразить в математически корректной… …   Большая советская энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»