Уравнение несжимаемости

Уравнение несжимаемости

Ниже приведены примеры уравнений непрерывности, которые выражают одинаковую идею непрерывного изменения некоторой величины. Уравнения непрерывности — (сильная) локальная форма законов сохранения.

Содержание

Электромагнетизм

В электродинамике уравнение непрерывности выводится из уравнений Максвелла. Оно утверждает, что дивергенция плотности тока равна изменению плотности заряда со знаком минус,

\operatorname{div}\mathbf{j} + {\partial \rho \over \partial t} = 0

Вывод

Закон Ампера гласит

 \operatorname{rot}\mathbf{H} = \mathbf{j} + {\partial \mathbf{D} \over \partial t}.

Взяв дивергенцию от обоих частей выражения, получим

\operatorname{div}\operatorname{rot}\mathbf{H}=\operatorname{div}\mathbf{j}+\frac{\partial }{\partial t}\operatorname{div}\mathbf{D},

но дивергенция ротора равняется нулю, таким образом

\operatorname{div}\mathbf{j}+\frac{\partial }{\partial t}\operatorname{div}\mathbf{D}=0

По теореме Гаусса

\operatorname{div}\mathbf{D} = \rho.\,

Подставляя это выражение в предыдущее уравнение, получаем искомое уравнение непрерывности.

Интерпретация

Плотность тока — это движение зарядов. Уравнение непрерывности гласит, что если заряд уходит из дифференциального объёма (то есть дивергенция плотности тока положительна), тогда количество заряда внутри объёма уменьшается. В этом случае скорость изменения плотности заряда отрицательна.

Теория волн

В теории волн уравнение непрерывности выражает собой закон сохранения энергии в элементарном объеме, в котором распространяются волны любой природы. Его дифференциальная форма

\operatorname{div}\mathbf{j}+\frac{\partial w}{\partial t}=0

где \mathbf{j}=\mathbf{j}(x,y,z,t) — вектор плотности потока энергии в точке с координатами \left(x, y, z\right) в момент времени \,t, \,w=w(x,y,z,t) — плотность энергии.

Вывод

По определению, вектор плотности потока энергии — это вектор, модуль которого равен энергии, переносимой через единичную площадку, перпендикулярную направлению переноса энергии, за единицу времени, т.е. j=\frac{dW}{dtdS_{\bot }}, а направление его совпадает с направлением переноса энергии. Тогда энергия, вытекающая в единицу времени из некоторого макроскопического объема V,

\oint\limits_{S}{\mathbf{j}d\mathbf{S}}=\frac{dW_{out}}{dt}

По закону сохранения энергии \frac{dW_{out}}{dt}=-\frac{dW_{in}}{dt}, где Win — энергия, находящаяся в объеме V. По определению, плотность энергии — энегрия единицы объема, тогда полная энегрия, заключенная в данном объеме, равна

W_{in}=\int\limits_{V}{wdV}

Тогда выражение для потока энергии примет вид

\oint\limits_{S}{\mathbf{j}d\mathbf{S}}=-\frac{d}{dt}\int\limits_{V}{wdV}=-\int\limits_{V}{\frac{\partial w}{\partial t}dV}

Применяя формулу Гаусса-Остроградского к левой части выражения, получим

\int\limits_{V}{\operatorname{div}\mathbf{j}dV}=-\int\limits_{V}{\frac{\partial w}{\partial t}dV}

В силу произвольности выбранного объема, заключаем что подынтегральные выражения равны, откуда и получаем дифференциальную форму уравнения непрерывности.

Гидродинамика

В гидродинамике уравнение непрерывности, иногда называемое уравнением неразрывности, выражает собой закон сохранения массы в элементарном объеме, то есть непрерывность потока жидкости или газа. Его дифференциальная форма

\frac{\partial \rho }{\partial t}+\operatorname{div}\rho \mathbf{v}=\frac{\partial \rho }{\partial t}+\rho \operatorname{div}\,\mathbf{v}+\mathbf{v}\operatorname{grad}\rho =0,

где \rho = \rho\left(x,y,z,t\right) — плотность жидкости (или газа), \mathbf{v}=\mathbf{v}\left( x,y,z,t \right) — вектор скорости жидкости (или газа) в точке с координатами \left(x, y, z\right) в момент времени \,t.

Вектор \mathbf{j}=\rho \mathbf{v} называют плотностью потока жидкости. Его направление совпадает с направлением течения жидкости, а абсолютная величина определяет количество вещества, протекающего в единицу времени через единицу площади, расположенную перпендикулярно вектору скорости.

Для несжимаемых жидкостей \,\rho = \operatorname{const}. Поэтому уравнение принимает вид

\operatorname{div}\,\mathbf{v}=0,

из чего следует соленоидальность поля скорости.

Квантовая механика

В нерелятивистской квантовой механике сохранение вероятности также приводит к уравнению непрерывности. Пусть P(xt) — плотность вероятности, тогда уравнение запишется в виде

\operatorname{div}\mathbf{j}+\frac{\partial }{\partial t}P(x,t)=0

где j — ток вероятности.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "Уравнение несжимаемости" в других словарях:

  • Приближение Буссинеска —     Механика сплошных сред …   Википедия

  • Закон Бернулли — является следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости: Здесь   плотность жидкости,   скорость потока,   высота, на которой находится рассматриваемый… …   Википедия

  • Закон Дарси —     Механика сплошных сред …   Википедия

  • Интеграл Бернулли — Закон Бернулли является следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости: Здесь   плотность жидкости,   скорость потока,   высота, на которой находится рассматриваемый… …   Википедия

  • Принцип Бернулли — Закон Бернулли является следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости: Здесь   плотность жидкости,   скорость потока,   высота, на которой находится рассматриваемый… …   Википедия

  • Эффект Бернулли — Закон Бернулли является следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости: Здесь   плотность жидкости,   скорость потока,   высота, на которой находится рассматриваемый… …   Википедия

  • Теорема Лиувилля о сохранении фазового объёма — У этого термина существуют и другие значения, см. Теорема Лиувилля. Теорема Лиувилля, названная по имени французского математика Жозефа Лиувилля, является ключевой теоремой в математической физике, статистической физике и гамильтоновой механике.… …   Википедия

  • Существование и гладкость решений уравнений Навье — Стокса — Задачи тысячелетия Равенство классов P и NP Гипотеза Ходжа Гипотеза Пуанкаре Гипотеза Римана Квантовая теория Янга  Миллса Существование и гладкость  решений уравнений Навье Стокса Свиннертона Дайера …   Википедия

  • Существование и гладкость решений уравнений Навье — Задачи тысячелетия Равенство классов P и NP Гипотеза Ходжа Гипотеза Пуанкаре Гипотеза Римана Квантовая теория Янга  Миллса Существование и гладкость  решений уравнений Навье Стокса Гипотеза Бёрча Свиннертон Дайера Существование и… …   Википедия

  • Неустойчивость Рэлея — Тейлора — Развитие нестабильности Рэлея  Тейлора. Неустойчивость Рэлея  Тейлора  возникает между двумя контактирующими сплошными средами различной плотности, когда более тяжёлая жидкость толкает более лёгкую. Примером такой неустойчивости… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»