Гидродинамика

Гидродинамика
 Просмотр этого шаблона  Механика сплошных сред
BernoullisLawDerivationDiagram.svg
Сплошная среда
См. также: Портал:Физика

Гидродина́мика — раздел физики сплошных сред, изучающий движение идеальных и реальных жидкости и газа. Как и в других разделах физики сплошных сред, прежде всего осуществляется переход от реальной среды, состоящей из большого числа отдельных атомов или молекул, к абстрактной сплошной среде, для которой и записываются уравнения движения.

Содержание

Основные разделы гидродинамики

Идеальная среда

С точки зрения механики, жидкостью называется вещество, в котором в равновесии отсутствуют касательные напряжения. Если движение жидкости не содержит резких градиентов скорости, то касательными напряжениями и вызываемым ими трением можно пренебречь и при описании течения. Если вдобавок малы градиенты температуры, то можно пренебречь и теплопроводностью, что и составляет приближение идеальной жидкости. В идеальной жидкости, таким образом, рассматриваются только нормальные напряжения, которые описываются давлением. В изотропной жидкости, давление одинаково по всем направлениям и описывается скалярной функцией.

Гидродинамика ламинарных течений

Гидродинамика ламинарных течений изучает поведение жидкости в нетурбулентном режиме. В некоторых случаях со специальной геометрией уравнения гидродинамики могут быть решены точно. Некоторые наиболее важные задачи этого раздела гидродинамики:

Турбулентность

Турбулентность — название такого состояния сплошной среды, газа, жидкости, их смесей, когда в них наблюдаются хаотические колебания мгновенных значений давления, скорости, температуры, плотности относительно некоторых средних значений, за счёт зарождения, взаимодействия и исчезновения в них вихревых движений различных масштабов, а также линейных и нелинейных волн, солитонов, струй. Происходит их нелинейное вихревое взаимодействие и распространение в пространстве и времени. Турбулентность возникает, когда число Рейнольдса превышает критическое.

Турбулентность может возникать и при нарушении сплошности среды, например, при кавитации (кипении). При опрокидывании и разрушении волны прибоя возникает многофазная смесь воды, воздуха, пены. Мгновенные параметры среды становятся хаотичными.

Существуют три зоны турбулентности, в зависимости от переходных чисел Рейнольдса: зона гладкостенного трения, переходная зона(смешанного трения)и зона гидравлически шероховатых труб (зона квадратического трения). Все магистральные нефте- и газопроводы эксплуатируются в зоне гидравлически шероховатых труб.

Турбулентное течение, по-видимому, может быть описано системой нелинейных дифференциальных уравнений. В неё входит уравнения Навье — Стокса, неразрывности и энергии.

Моделирование турбулентности — одна из наиболее трудных и нерешённых проблем в гидродинамике и теоретической физике. Турбулентность всегда возникает при превышении некоторых критических параметров: скорости и размеров обтекаемого тела или уменьшения вязкости. Она также может возникать при сильно неравномерных граничных и начальных условиях на границе обтекаемого тела. Или, может исчезать при сильном ускорении потока на поверхности, при сильной стратификации среды. Поскольку турбулентность характеризуется случайным поведением мгновенных значений скорости и давления, температуры в данной точке жидкости или газе, то это означает, что при одних и тех же условиях детальная картина распределения этих величин в жидкости будет различной и практически никогда не повторяется. Поэтому, мгновенное распределение скорости в различных точках турбулентного потока обычно не представляет интереса, а важными являются осреднённые величины. Проблема описания гидродинамической турбулентности заключается, в частности, и в том, что пока не удаётся на основании только уравнений гидродинамики предсказать, когда именно должен начинаться турбулентный режим и что именно в нём должно происходить без экспериментальных данных. На суперкомпьютерах удаётся моделировать только некоторые типы течений. В результате, приходится довольствоваться лишь феноменологическим, приближенным описанием. До конца XX столетия два результата, описывающие турбулентное движение жидкости считались незыблемыми — «универсальный» закон фон Кармана-Прандтля о распределении средней локальной скорости течения жидкости (вода, воздух) в гладких трубах при высоких значениях числа Рейнольдса и теория Колмогорова-Обухова о локальной структуре турбулентности.

Значительный прорыв в теории турбулентности при очень высоких числах Рейнольдса связан с работами Андрея Николаевича Колмогорова 1941 и 1962 годов, который установил, что при некотором интервале чисел Рейнольдса локальная статистическая структура турбулентности носит универсальный характер, зависит от нескольких внутренних параметров и не зависит от внешних условий.

Сверхзвуковая гидродинамика

Этот раздел изучает поведение течений при их скоростях вблизи или превышающих скорость звука в среде. Отличительной особенностью такого режима является то, что при нем возникают ударные волны. В определённых случаях, например, при детонации, структура и свойства ударной волны усложняются. Интересен также случай, когда скорости течений столь высоки, что становятся близкими к скорости света. Такие течения наблюдаются во многих астрофизических объектах, и их поведение изучает релятивистская гидродинамика.

Тепломассообмен

Часто течения жидкостей сопровождается неравномерным распределением температуры (остывание тел в жидкости, течение горячей жидкости по трубам). При этом свойства жидкости (плотность, вязкость, теплопроводность) могут сами зависеть от локальной температуры. В таком случае задача о распространении тепла и задача движения жидкости становятся связанными. Дополнительная сложность таких задач состоит в том, что зачастую простейшие решения становятся неустойчивыми…

Магнитная гидродинамика

Описывает поведение электропроводящих сред (жидких металлов, электролитов, плазмы) в магнитном поле.

Теоретическая основа магнитной гидродинамики — уравнения гидродинамики с учетом электрических токов и магнитных полей в среде и уравнений Максвелла. В средах с большой проводимостью (горячая плазма) и (или) большими размерами (астрофизические объекты) к обычному газодинамическому давлению добавляются магнитное давление и магнитное натяжение, которое приводит к появлению волн Альфве́на.

С помощью магнитной гидродинамики описываются многие явления космической физики: планетарные и звездные магнитные поля, происхождение магнитных полей галактик, солнечный цикл, хромосферные вспышки на солнце, солнечные пятна.

Прикладная гидродинамика

Сюда относятся различные конкретные научно-технические задачи. Среди прочих задач упомянем

Реология

Реология — раздел гидродинамики, изучающий поведение нелинейных жидкостей, т. е. таких жидкостей, для которых зависимости скорости течения от приложенной силы нелинейна. Примеры нелинейных жидкостей — пасты, гели, стекловидные тела, псевдопластики, вискоэластики. Реология активно используется в материаловедении, в геофизике.

См. также

Литература

Ссылки


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат
Синонимы:

Полезное


Смотреть что такое "Гидродинамика" в других словарях:

  • гидродинамика — гидродинамика …   Орфографический словарь-справочник

  • Гидродинамика — раздел механики сплошных сред, в котором изучаются закономерности движения жидкости и её взаимодействие с погружёнными в неё телами. Поскольку, однако, при относительно небольших скоростях движения воздух можно считать несжимаемой жидкостью,… …   Энциклопедия техники

  • ГИДРОДИНАМИКА — (от греч. hydor вода и динамика), раздел гидроаэромеханики, в к ром изучается движение несжимаемых жидкостей и их вз ствие с тв. телами. Г. исторически наиболее ранний и сильно развитый раздел механики жидкостей и газов, поэтому иногда Г. не… …   Физическая энциклопедия

  • ГИДРОДИНАМИКА — (от гидро... и динамика) раздел гидромеханики, изучает движение жидкостей и воздействие их на обтекаемые ими твердые тела. Теоретические методы гидродинамики основаны на решении точных или приближенных уравнений, описывающих физические явления в… …   Большой Энциклопедический словарь

  • ГИДРОДИНАМИКА — ГИДРОДИНАМИКА, в физике раздел МЕХАНИКИ, который изучает движение текучих сред (жидкостей и газов). Имеет большое значение в промышленности, особенно химической, нефтяной и гидротехнике. Изучает свойства жидкостей, такие как молекулярное… …   Научно-технический энциклопедический словарь

  • ГИДРОДИНАМИКА — ГИДРОДИНАМИКА, гидродинамики, мн. нет, жен. (от греч. hydor вода и dynamis сила) (мех.). Часть механики, изучающая законы равновесия движущихся жидкостей. Расчет водных турбин основывается на законах гидромеханики. Толковый словарь Ушакова. Д.Н.… …   Толковый словарь Ушакова

  • гидродинамика — сущ., кол во синонимов: 4 • аэрогидродинамика (1) • гидравлика (2) • динамика (18) …   Словарь синонимов

  • ГИДРОДИНАМИКА — часть гидромеханики, наука о движении несжимаемых жидкостей под действием внешних сил и о механическом воздействии между жидкостью и соприкасающимися с нею телами при их относительном движении. При изучении той или иной задачи Г. применяет… …   Геологическая энциклопедия

  • Гидродинамика — раздел гидромеханики, изучающий законы движения несжимаемых жидкостей и взаимодействия их с твердыми телами. Гидродинамические исследования широко применяются при проектировании кораблей, подводных лодок и т. д. EdwART. Толковый Военно морской… …   Морской словарь

  • гидродинамика — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN hydrodynamics …   Справочник технического переводчика

  • ГИДРОДИНАМИКА — раздел (см.), изучающий законы движения несжимаемой жидкости и её взаимодействие с твёрдыми телами. Гидродинамические исследования широко применяются при проектировании кораблей, подводных лодок, судов на подводных крыльях и т.д …   Большая политехническая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»