Парниковый эффект

Парниковый эффект
Рис. 1. Прозрачность атмосферы Земли в видимом и инфракрасном диапазонах (поглощение и рассеивание):
1. Интенсивность солнечной радиации (слева) и инфракрасного излучения поверхности Земли (справа) — даны спектральные интенсивности без учёта и с учётом поглощения
2. Суммарное поглощение и рассеивание в атмосфере в зависимости от длины волны
3. Спектры поглощения различных парниковых газов и рэлеевское рассеяние.

Парнико́вый эффе́кт — повышение температуры нижних слоёв атмосферы планеты по сравнению с эффективной температурой, то есть температурой теплового излучения планеты, наблюдаемого из космоса.

Содержание

История исследований

Идея о механизме парникового эффекта была впервые изложена в 1827 году Жозефом Фурье в статье «Записка о температурах земного шара и других планет», в которой он рассматривал различные механизмы формирования климата Земли, при этом он рассматривал как факторы, влияющие на общий тепловой баланс Земли (нагрев солнечным излучением, охлаждение за счёт лучеиспускания, внутреннее тепло Земли), так и факторы, влияющие на теплоперенос и температуры климатических поясов (теплопроводность, атмосферная и океаническая циркуляция)[1][2].

При рассмотрении влияния атмосферы на радиационный баланс Фурье проанализировал опыт М. де Соссюра с зачернённым изнутри сосудом, накрытым стеклом. Де Соссюр измерял разность температур внутри и снаружи такого сосуда, выставленного на прямой солнечный свет. Фурье объяснил повышение температуры внутри такого «мини-парника» по сравнению с внешней температурой действием двух факторов: блокированием конвективного теплопереноса (стекло предотвращает отток нагретого воздуха изнутри и приток прохладного снаружи) и различной прозрачностью стекла в видимом и инфракрасном диапазоне.

Именно последний фактор и получил в позднейшей литературе название парникового эффекта — поглощая видимый свет, поверхность нагревается и испускает тепловые (инфракрасные) лучи; поскольку стекло прозрачно для видимого света и почти непрозрачно для теплового излучения, то накопление тепла ведёт к такому росту температуры, при котором количество проходящих через стекло тепловых лучей достаточно для установления теплового равновесия.

Фурье постулировал, что оптические свойства атмосферы Земли аналогичны оптическим свойствам стекла, то есть её прозрачность в инфракрасном диапазоне ниже, чем прозрачность в диапазоне оптическом, однако количественные данные по поглощению атмосферы в инфракрасном диапазоне долгое время являлись предметом дискуссий.

В 1896 году Сванте Аррениус, шведский физико-химик, для количественного определения поглощении атмосферой Земли теплового излучения проанализировал данные Сэмюэла Лэнгли о болометрической светимости Луны в инфракрасном диапазоне[3]. Аррениус сравнил данные, полученные Лэнгли при разных высотах Луны над горизонтом (т.е. при различных величинах пути излучения Луны через атмосферу), с расчетным спектром ее теплового излучения и рассчитал как коэффициенты поглощения инфракрасного излучения водяным паром и углекислым газом в атмосфере, так и изменения температуры Земли при вариациях концентрации углекислого газа. Аррениус также выдвинул гипотезу, что снижение концентрации в атмосфере углекислого газа может являться одной из причин возникновения ледниковых периодов[4].

Количественное определение парникового эффекта

Суммарная энергия солнечного излучения, поглощаемого в единицу времени планетой радиусом \! R и сферическим альбедо \! A равна:

E = \pi R^2 { E_0 \over r^2} (1 - A),

где \! E_0 - солнечная постоянная, и \! r - расстояние до Солнца.

В соответствии с законом Стефана — Больцмана равновесное тепловое излучение \! L планеты с радиусом \! R, т. е. площадью излучающей поверхности \! 4\pi R^2:

L=4\pi R^2 \sigma \bar T_E^4,

где \bar T_E - эффективная температура планеты.

Количественно величина парникового эффекта \Delta \bar T определяется как разница между средней приповерхностной температурой атмосферы планеты \bar T_S и её эффективной температурой \bar T_E. Парниковый эффект существенен для планет с плотными атмосферами, содержащими газы, поглощающие излучение в инфракрасной области спектра, и пропорционален плотности атмосферы. Следствием парникового эффекта является также сглаживание температурных контрастов как между полярными и экваториальными зонами планеты, так и между дневными и ночными температурами.

Таблица 1[см 1]
Планета Атм. давление у поверхности, атм. \bar T_E \bar T_S \Delta \bar T \bar T_{max} \bar T_{min} \Delta T
Венера 90 231 735 504 - - -
Земля 1 249 288 39 313 200 113
Луна 0 0 393 113 280
Марс 0,006 210 218 8 300 147 153
  1. Температуры даны в Кельвинах, \bar T_{max} — средняя максимальная температура в полдень на экваторе, \bar T_{min} — средняя минимальная температура.

Природа парникового эффекта

Парниковый эффект атмосфер обусловлен их различной прозрачностью в видимом и дальнем инфракрасном диапазонах. На диапазон длин волн 400—​1500 нм в видимом свете и ближнем инфракрасном диапазоне приходится 75 % энергии солнечного излучения, большинство газов не поглощают в этом диапазоне; рэлеевское рассеяние в газах и рассеяние на атмосферных аэрозолях не препятствуют проникновению излучения этих длин волн в глубины атмосфер и достижению поверхности планет. Солнечный свет поглощается поверхностью планеты и её атмосферой (особенно излучение в ближней УФ- и ИК-областях) и разогревает их. Нагретая поверхность планеты и атмосфера излучают в дальнем инфракрасном диапазоне: так, в случае Земли при \bar T_S равном 300 K, 75 % теплового излучения приходится на диапазон 7,8—28 мкм, для Венеры при \bar T_S равном 700 K — 3,3—12 мкм.

Атмосфера, содержащая многоатомные газы (двухатомные газы диатермичны - прозрачны для теплового излучения), поглощающие в этой области спектра (т.н. парниковые газыH2O, CO2, CH4 и пр. — см. Рис. 1), существенно непрозрачна для такого излучения, направленного от её поверхности в космическое пространство, то есть имеет в ИК-диапазоне большую оптическую толщину. Вследствие такой непрозрачности атмосфера становится хорошим теплоизолятором, что, в свою очередь, приводит к тому, что переизлучение поглощённой солнечной энергии в космическое пространство происходит в верхних холодных слоях атмосферы. В результате эффективная температура Земли как излучателя оказывается более низкой, чем температура её поверхности.

Влияние парникового эффекта на климат планет

Степень влияния парникового эффекта на приповерхностные температуры планет (при оптической толщине атмосферы < 1) зависит от оптической плотности парниковых газов и, соответственно, их парциального давления у поверхности планеты. Таким образом, парниковый эффект \Delta \bar T наиболее выражен у планет с плотной атмосферой, составляя у Венеры ~500 K.

Таблица 2[5]
Планета Атм. давление
у поверхности, атм.
Концентрация
CO2, %
\! P_{CO_2}
атм.
\Delta \bar T
Венера ~ 93 ~ 96,5 ~ 89,8 504
Земля 1 0,038 0,038 39
Марс ~ 0,007 95,72 ~ 0,0067 8

Вместе с тем следует отметить, что величина парникового эффекта зависит от количества парниковых газов в атмосферах и, соответственно, зависит от химической эволюции и изменений состава планетарных атмосфер.

Парниковый эффект и климат Земли

Климатические индикаторы за последние 0,5 млн лет: изменение уровня океана (синий), концентрация 18O в морской воде, концентрация CO2 в антарктическом льду. Деление временной шкалы — 20 000 лет. Пики уровня моря, концентрации CO2 и минимумы 18O совпадают с межледниковыми температурными максимумами.

По степени влияния на климат парникового эффекта Земля занимает промежуточное положение между Венерой и Марсом: у Венеры повышение температуры приповерхностной атмосферы в ~13 раз выше, чем у Земли, в случае Марса в ~5 раз ниже, эти различия являются следствием различных плотностей и составов атмосфер этих планет.

При неизменности солнечной постоянной и, соответственно, потока солнечной радиации, среднегодовые приповерхностные температуры и климат, определяются тепловым балансом Земли. Для теплового баланса выполняются условия равенства величин поглощения коротковолновой радиации и излучения длинноволновой радиации в системе Земля-атмосфера. В свою очередь, доля поглощенной коротковолновой солнечной радиации определяется общим (поверхность и атмосфера) альбедо Земли, на величину потока длинноволновой радиации, уходящей в космос, существенное влияние оказывает парниковый эффект, в свою очередь, зависящий от состава и температуры земной атмосферы.

Основными парниковыми газами, в порядке их оцениваемого воздействия на тепловой баланс Земли, являются водяной пар, углекислый газ, метан и озон[6]

Основные парниковые газы атмосферы Земли
Газ
 
Формула
 
Вклад
(%)
Водяной пар H2O 36 – 72 %  
Диоксид углерода CO2 9 – 26 %
Метан CH4 4 – 9 %  
Озон O3 3 – 7 %  

Главный вклад в парниковый эффект земной атмосферы вносит водяной пар или влажность воздуха тропосферы, влияние других газов гораздо менее существенно по причине их малой концентрации.

Вместе с тем, концентрация водяного пара в тропосфере существенно зависит от приповерхностной температуры: увеличение суммарной концентрации «парниковых» газов в атмосфере должно привести к усилению влажности и парникового эффекта, который в свою очередь приведет к увеличению приповерхностной температуры.

При понижении приповерхностной температуры концентрация водяных паров падает, что ведет к уменьшению парникового эффекта, и, одновременно с этим при снижении температуры в приполярных районах формируется снежно-ледяной покров, ведущий к повышению альбедо и, совместно, с уменьшением парникового эффектом, вызывающим понижение средней приповерхностной температуры.

Таким образом, климат на Земле может переходить в стадии потепления и похолодания в зависимости от изменения альбедо системы Земля - атмосфера и парникового эффекта.

Климатические циклы коррелируют с концентрацией углекислого газа в атмосфере: в течение среднего и позднего плейстоцена, предшествующих современному времени, концентрация атмосферного углекислого газа снижалась во время длительных ледниковых периодов и резко повышалась во время кратких межледниковий

В течение последних десятилетий наблюдается рост концентрации углекислого газа в атмосфере, считается, что этот рост в значительной степени имеет антропогенный характер.

В конце восьмидесятых — начале девяностых годов XX века несколько лет подряд среднегодовая глобальная температура была выше обычной. Это вызвало опасения, что вызванное человеческой деятельностью глобальное потепление уже началось. Среди ученых существует консенсус, что за последние сто лет среднегодовая глобальная температура поднялась на 0,3 — 0,6 градусов Цельсия. Существует научный консенсус, что жизнедеятельность человека является основным фактором, который влияет на текущее повышение температуры на Земле[7][8].

См. также

Примечания

  1. Joseph Fourier. Mémoire sur les températures du globe terrestre et des espaces planétaires p.97-125 Mémoires de l’Académie royale des sciences de l’Institut de France, t. VII, p.570 à 604. Paris, Didot; 1827 // Gallica-Math: Œuvres complètes
  2. Тепло, выделяемое в результате человеческой активности Жозеф Фурье не рассматривал в качестве значимого фактора.
  3. Samuel P. Langley (and Frank W. Very). The Temperature of the Moon, Memoir of the National Academy of Sciences, vol. iv. 9th mem. 193pp (1890)
  4. «On the Influence of Carbonic Acid in the Air Upon the Temperature of the Ground», Philosophical Magazine and Journal Science, Series 5, Volume 41, pages 237-276  (англ.)
  5. Cравнительные значения для трех планет земной группы без учета давления водяного пара, температуры приведены в Кельвинах.
  6. : Kiehl, J. T.; Kevin E. Trenberth (1997-02). «Earth's Annual Global Mean Energy Budget». Bulletin of the American Meteorological Society 78 (2): 197-208. DOI:10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2. ISSN 0003-0007. Проверено 2011-08-15.
  7. Joint science academies' statement: The science of climate change (ASP). Royal Society (17.05.2001). — «The work of the Intergovernmental Panel on Climate Change (IPCC) represents the consensus of the international scientific community on climate change science» (недоступная ссылка — история) Проверено 1 апреля 2007.
  8. (18.10.2007) «Rising to the climate challenge». Nature 449 (7164): 755. DOI:10.1038/449755a. Проверено 2007-11-06.

Ссылки

Статьи

Международные соглашения


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "Парниковый эффект" в других словарях:

  • ПАРНИКОВЫЙ ЭФФЕКТ — свойство атмосферы пропускать солнечную радиацию, но задерживать земное излучение, способствуя аккумуляции тепла нашей планетой. Экологический словарь. Алма Ата: «Наука». Б.А. Быков. 1983. ПАРНИКОВЫЙ ЭФФЕКТ постепенное потепление климата на… …   Экологический словарь

  • ПАРНИКОВЫЙ ЭФФЕКТ — (оранжерейный эффект) в атмосферах планет нагрев внутренних слоев атмосферы (Земли, Венеры и других планет с плотными атмосферами), обусловленный прозрачностью атмосферы для основной части излучения Солнца (в оптическом диапазоне) и поглощением… …   Большой Энциклопедический словарь

  • ПАРНИКОВЫЙ ЭФФЕКТ — в атмосферах планет, нагрев внутренних слоев атмосферы (Земли, Венеры и других планет с плотными атмосферами), обусловленный прозрачностью атмосферы для основной части излучения Солнца (в оптическом диапазоне) и поглощением атмосферой основной… …   Современная энциклопедия

  • ПАРНИКОВЫЙ ЭФФЕКТ — ПАРНИКОВЫЙ ЭФФЕКТ, подъем температуры на поверхности планеты в результате тепловой энергии, которая появляется в атмосфере из за нагревания газов. Некоторые газы являются причиной того, что атмосфера выполняет роль как стекла в парнике. В… …   Научно-технический энциклопедический словарь

  • Парниковый эффект — в атмосферах планет, нагрев внутренних слоев атмосферы (Земли, Венеры и других планет с плотными атмосферами), обусловленный прозрачностью атмосферы для основной части излучения Солнца (в оптическом диапазоне) и поглощением атмосферой основной… …   Иллюстрированный энциклопедический словарь

  • Парниковый эффект — Greenhouse effect эффект, обусловленный ростом концентрации некоторых газов (углекислый газ, метан, хлорфторуглероды и др.) в атмосфере, сопровождающийся поглощением этими газами инфракрасного излучения земной поверхности, нагревом нижних слоев… …   Термины атомной энергетики

  • Парниковый эффект — ПАРНИК, а, м. Род теплицы в виде гряд, покрытых застеклёнными рамами или прозрачной плёнкой, для выращивания овощей, плодов и ранней зелени. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • ПАРНИКОВЫЙ ЭФФЕКТ — в атмосферах планет повышение темп ры внутр. слоев атмосферы и поверхности планеты, обусловленноетем, что атмосфера белее прозрачна для падающего солнечного излучения …   Физическая энциклопедия

  • Парниковый эффект — постепенное потепление климата на Земле в результате повышения содержания в приземном слое атмосферы пыли, углекислого газа, метана и фторхлоруглеводородных соединений технического происхождения (сжигание топлива, промышленные выбросы и т.п.),… …   Словарь черезвычайных ситуаций

  • парниковый эффект — Потепление на земной поверхности в результате того, что атмосфера легко пропускает коротковолновое солнечное излучение, но имеет тенденцию задерживать длинноволновую тепловую энергию, которая испускается Землей во внешнее пространство; обусловлен …   Справочник технического переводчика

  • парниковый эффект — Нагревание нижних слоев атмосферы в результате разных поглощающих свойств атмосферного воздуха для длиннои коротковолновой (солнечной) радиации. → Рис. 140 …   Словарь по географии


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»