Магнитный диполь

Магнитный диполь
Классическая электродинамика
Магнитное поле соленоида
Электричество · Магнетизм
Магнитное поле Земли примерно совпадает с полем диполя. Однако «N» и «S» (северный и южный) полюса отмечены «географически», то есть противоположно принятому обозначению для полюсов магнитного диполя.

Диполь — идеализированная система, служащая для приближенного описания распространения поля. Дипольное приближение основано на разложении потенциалов поля в ряд по степеням радиус-вектора и отбрасывании всех членов выше первого порядка. Полученные функции будут эффективно описывать поле в случае если

  1. Размеры излучающей поле системы малы по сравнению с рассматриваемыми расстояниями, так что отношение характерного размера системы к длине радиус-вектора является малой величиной и имеет смысл рассмотрение лишь первых членов разложения потенциалов в ряд.
  2. Член первого порядка в разложении не равен 0, в противном случае нужно использовать приближение более высокой мультипольности.
  3. В уравнениях рассматриваются градиенты потенциалов не выше первого порядка.

Типичный пример диполя — два бесконечно близких заряда, равных по величине и противоположных по знаку. Поле такой системы полностью описывается дипольным приближением.

Содержание

Дипольный момент системы

Эквипотенциальные поверхности электрического диполя

Электрический диполь

Силовые линии электрического диполя

Электрический диполь — идеализированная электронейтральная система, состоящая из точечных и равных по абсолютной величине положительного и отрицательного электрических зарядов.

Другими словами, электрический диполь представляет из себя совокупность двух равных по абсолютной величине разноимённых точечных зарядов, находящихся на некотором расстоянии друг от друга

Произведение вектора \vec l, проведённого от отрицательного заряда к положительному, на абсолютную величину зарядов q\,, называется дипольным моментом: \vec d=q\vec l.

Во внешнем электрическом поле \vec E на диполь действует момент сил {\vec E}\times{\vec d}, который стремится повернуть его так, чтобы дипольный момент развернулся вдоль направления поля. Потенциальная энергия диполя в электрическом поле равна -{\vec E}\cdot{\vec d}.

Вдали от диполя напряжённость его электрического поля убывает с расстоянием R как 1 / R3, то есть быстрее, чем у точечного заряда.

Любая электронейтральная система в некотором приближении может рассматриваться как электрический диполь с моментом \vec d = \sum_i q_i {\vec r}_i, где q_i\, — заряд i-го элемента, {\vec r}_i — его радиус-вектор. При этом дипольное приближение будет корректным, если расстояние, на котором изучается электрическое поле системы, велико по сравнению с её характерными размерами.

Магнитный диполь

Магнитный диполь — аналог электрического, который можно представить себе как систему двух «магнитных зарядов» (эта аналогия условна, так как магнитных зарядов, с точки зрения современной электродинамики, не существует). В качестве модели магнитного диполя можно рассматривать небольшую (по сравнению с расстояниями, на которых изучается генерируемое диполем магнитное поле) плоскую замкнутую проводящую рамку площади S\,, по которой течёт ток I\,. При этом магнитным моментом диполя (в системе СГСМ) называют величину {\vec \mu} = I S {\vec n}, где {\vec n} — единичный вектор, направленный перпендикулярно плоскости рамки в том направлении, с которого ток в рамке течёт против часовой стрелки.

Поле колеблющегося диполя

В этом разделе рассматривается поле, создаваемое точечным электрическим диполем \mathbf{d}(t), находящимся в заданной точке пространства.

Поле на близких расстояниях

Эволюция поля колеблющегося электрического диполя в реальном времени. Диполь находится в точке (60,60) и колеблется по вертикали с частотой 1 рад/с (~0.16 Гц)

Поле точечного диполя, колеблющегося в вакууме, имеет вид

\mathbf{E} = \frac{3 \mathbf{n} (\mathbf{n}, \mathbf{d})-\mathbf{d}}{R^3} +
\frac{3 \mathbf{n} (\mathbf{n}, \dot \mathbf{d}) - \dot \mathbf{d}}{c R^2} +
\frac{ \mathbf{n} (\mathbf{n}, \ddot  \mathbf{d}) - \ddot \mathbf{d}}{c^2 R}
\mathbf{B} = \left[\frac{\dot \mathbf{d}}{c R^2} + \frac{\ddot \mathbf{d}}{R c^2} , \mathbf{n} \right] = 
\left[\mathbf{n} , \mathbf{E} + \frac{\mathbf{d}}{R^3}\right],

где \mathbf{n} = \frac{\mathbf{R}}{R} — единичный вектор в рассматриваемом направлении, c — скорость света.

Этим выражениям можно придать несколько другую форму, если ввести вектор Герца

\mathbf{Z} = - \frac{1}{R} \cdot \mathbf{d}\left(t-\frac{R}{c}\right)

Напомним, что диполь покоится в начале координат, так что \mathbf{d} является функцией одной переменной. Тогда

\mathbf{E} = - \operatorname{rot}\,\operatorname{rot}\,\mathbf{Z}
\mathbf{B} = - \frac{1}{c}\operatorname{rot}\,\dot\mathbf{Z}

При этом потенциалы поля можно выбрать в виде

\mathbf{A} = - \frac{\dot \mathbf{Z}}{c}, ~~ \phi = \operatorname{div}\,\mathbf{Z}

Указанные формулы можно применять всегда, когда применимо дипольное приближение.

Дипольное излучение (излучение в волновой зоне)

Приведённые формулы существенно упрощаются, если размеры системы много меньше длины излучаемой волны, то есть скорости зарядов много меньше c, а поле рассматривается на расстояниях много больших, чем длина волны. Такую область поля называют волновой зоной. Распространяющуюся волну можно в этой области считать практически плоской. Из всех членов в выражениях для \mathbf{E} и \mathbf{B} существенными оказываются только члены, содержащие вторые производные от \mathbf{d}, так как

\frac{\dot \mathbf{d}}{c} \approx \frac{d}{\lambda}
\frac{\ddot \mathbf{d}}{c^2} \approx \frac{d}{\lambda^2}

Выражения для полей принимают вид

\mathbf{B} = \frac{1}{c^2 R}[\ddot \mathbf{d},\mathbf{n}], ~~ \mathbf{B} = [\mathbf{n} , \mathbf{E}]
\mathbf{E} = \frac{1}{c^2 R}\left[ [\ddot \mathbf{d},\mathbf{n}] , \mathbf{n} \right], ~~ \mathbf{E} = [\mathbf{B} , \mathbf{n}]

В плоской волне интенсивность излучения в телесный угол do равна

dI = c \frac{H^2}{4\pi}R^2 do,

поэтому для дипольного излучения

dI = \frac{1}{4 \pi c^3}[\ddot \mathbf{d}, \mathbf{n}]^2 do 
= \frac{\ddot d^2}{4\pi c^3}\sin^2{\theta} do

где θ — угол между векторами \ddot\mathbf{d} и \mathbf{n}. Найдём полную излучаемую энергию. Учитывая, что do = 2\pi\, \sin{\theta}\, d\theta, проинтегрируем выражение по dθ от 0 до π. Полное излучение равно

I = \frac{2}{3 c^3} {\ddot\mathbf{d}}^2

Укажем спектральный состав излучения. Он получается заменой вектора \ddot \mathbf{d} на его Фурье-компоненту и одновременным умножением выражения на 2. Таким образом:

d \mathcal{E}_\omega = \frac{4 \omega^4}{3 c^3} \left| \mathbf{d}_\omega \right|^2 \frac{d\omega}{2\pi}

Литература

См. также


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "Магнитный диполь" в других словарях:

  • МАГНИТНЫЙ ДИПОЛЬ — см. Диполь магнитный. Физическая энциклопедия. В 5 ти томах. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988 …   Физическая энциклопедия

  • Магнитный диполь — любой элементарный объем, создающий на больших по сравнению с его размерами расстояниях магнитное поле, идентичное магнитному полю элементарного контура электрического тока... Источник: ЭЛЕКТРОТЕХНИКА . ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПОНЯТИЙ.… …   Официальная терминология

  • магнитный диполь — Любой элементарный объем, создающий на больших по сравнению с его размерами расстояниях магнитное поле, идентичное магнитному полю элементарного контура электрического тока. [ГОСТ Р 52002 2003] Тематики электротехника, основные понятия …   Справочник технического переводчика

  • магнитный диполь — элементарный электрический ток; магнитный диполь Замкнутый электрический ток в элементарном контуре, т. е. в контуре, размеры которого весьма малы по сравнению с расстоянием до точек наблюдения …   Политехнический терминологический толковый словарь

  • магнитный диполь — magnetinis dipolis statusas T sritis Standartizacija ir metrologija apibrėžtis Elektros srovė, tekanti uždaru kontūru, kurio matmenys daug mažesni už atstumą tarp kontūro ir nagrinėjamojo srovės magnetinio lauko taško. atitikmenys: angl. magnetic …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • магнитный диполь — magnetinis dipolis statusas T sritis fizika atitikmenys: angl. magnetic dipole vok. magnetischer Dipol, m rus. магнитный диполь, m pranc. dipôle magnétique, m …   Fizikos terminų žodynas

  • магнитный диполь — 61 магнитный диполь Любой элементарный объем, создающий на больших по сравнению с его размерами расстояниях магнитное поле, идентичное магнитному полю элементарного контура электрического тока Источник: ГОСТ Р 52002 2003: Электротехника. Термины… …   Словарь-справочник терминов нормативно-технической документации

  • Магнитный диполь —         см. в статье Диполь электрический и магнитный …   Большая советская энциклопедия

  • Магнитный диполь — 1. Любой элементарный объем, создающий на больших по сравнению с его размерами расстояниях магнитное поле, идентичное магнитному полю элементарного контура электрического тока Употребляется в документе: ГОСТ Р 52002 2003 Электротехника. Термины и …   Телекоммуникационный словарь

  • ДИПОЛЬ — (от ди... и греч. polos полюс) 1) электрический диполь совокупность двух точечных электрических зарядов, равных по величине и противоположных по знаку, находящихся на некотором расстоянии друг от друга;2) магнитный диполь совокупность двух равных …   Большой Энциклопедический словарь


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»