Формула Планка

Формула Планка

Формула Планка — выражение для спектральной плотности мощности излучения абсолютно чёрного тела, которое было получено Максом Планком. Для плотности энергии излучения u(\omega, T):

u(\omega,T) =\frac{ \omega^2}{\pi^2c^3}\frac{\hbar\omega}{ e^{\frac{\hbar\omega}{kT}}-1}.

Формула Планка была получена после того, как стало ясно, что формула Рэлея — Джинса удовлетворительно описывает излучение только в области длинных волн. Для вывода формулы Планк в 1900 году сделал предположение о том, что электромагнитное излучение испускается в виде отдельных порций энергии (квантов), величина которых связана с частотой излучения выражением:


\varepsilon = \hbar \omega.

Коэффициент пропорциональности \hbar впоследствии назвали постоянной Планка, \hbar = 1.054 · 10−27 эрг·с.

Содержание

Вывод для абсолютно чёрного тела

Излучение абсолютно чёрного тела
Файл:XkcdScience.svg
Формула в XKCD

Выражение для средней энергии колебания с частотой ω дается выражением:


        \overline{\varepsilon} = \frac{\hbar \omega}
                                      {\mathrm{exp}( \hbar \omega / kT) -1}, \qquad\qquad (1)

где \hbarпостоянная Планка, kпостоянная Больцмана.


Количество стоячих волн в трёхмерном пространстве равно:


        \mathrm{d}n_{\omega}= \frac{\omega^2 \mathrm{d} \omega}{\pi^2 c^3}   \qquad\qquad (2)

Переход к формулам Рэлея—Джинса.

Формула Планка точно согласуется с экспериментальными данными во всём интервале частот от 0 до \infty. При малых частотах (больших длинах волн), когда \hbar \omega / kT \ll 1 можно разложить экспоненту по \hbar \omega / kT. В результате получим, что  \mathrm{exp}(\hbar \omega / kT) -1 \approx 1 + \hbar \omega / kT -1 =  \hbar \omega / kT , тогда (1) и (2) переходят в формулу Рэлея—Джинса.


        u(\omega,T) = kT \frac{\omega^2 }{\pi^2 c^3} 
и

        f(\omega,T) = kT \frac{\omega^2 }{4 \pi^2 c^2}

Переход к закону Стефана — Больцмана.

Энергетическая светимость равна площади, ограниченной графиком функции f(ω,Т)

Для энергетической светимости следует записать интеграл:


        R= \int_0^{\infty} f(\omega,T)\mathrm{d} \omega 
         = \int_0^{\infty} \frac{\hbar \omega^3}{4 \pi^2 c^2} 
                                \cdot \frac{\mathrm{d} \omega }{\mathrm{exp}( \hbar \omega / kT) -1}

Введём переменную x = \hbar \omega / kT, тогда \omega = (kT/ \hbar)x , \mathrm{d} \omega = (kT/ \hbar) \mathrm{d}x, получим


        R= \frac{\hbar}{4 \pi^2 c^2} \cdot \left( \frac{kT}{\hbar} \right)^4 \int_0^{\infty} \frac{x^3 \mathrm{d}\mathrm{x}}{\mathrm{e}^x -1}.

Полученный интеграл имеет точное значение: ~\pi^4 / 15 , подставив его получим известный закон Стефана — Больцмана:


        R= \frac{\pi^2 k^4}{60 c^2 \hbar^3}T^4 = \sigma T^4

Подстановка численных значений констант даёт значение для  \sigma = 5,6704 \cdot 10^{-8} Вт/(м^2 \cdot K^4), что хорошо согласуется с экспериментом.

Переход к закону смещения Вина

Для нахождения закона, по которому происходит смещение максимума φ(λ,Т) в зависимости от температуры, надо исследовать функцию φ(λ,Т) на максимум.

Для перехода к закону Вина, необходимо продифференцировать выражение (5) по \lambda и приравнять нулю (поиск экстремума):


         \frac{ \mathrm{d} \varphi(\lambda, T)}{\mathrm{d} \lambda} = 
    \frac{
          4 \pi^2 \hbar c^2 
                             \left\{  
                                    \frac{2 \pi \hbar c}{k T \lambda}
                                    \mathrm{exp} 
                                        \left( \frac{2 \pi \hbar c}{k T \lambda} 
                                        \right)
                                    - 5 \left[ 
                                              \mathrm{exp} \left( \frac{2 \pi \hbar c}{k T \lambda} \right) -1 
                                        \right]
                             \right\}
         }
         {\lambda^6 	\left[ \mathrm{exp} \left( \frac{2 \pi \hbar c}{k T \lambda} \right) -1  \right]^2} =0
.

Значение \lambda_m, при котором функция достигает максимума, обращает в нуль выражение, стоящее в фигурных скобках. Обозначим  \frac{2 \pi \hbar c}{k T \lambda_m} = x, получится уравнение:


       ~xe^x-5(e^x-1)=0
.

Решение такого уравнения даёт x=4.965. Следовательно  \frac{2 \pi \hbar c}{k T \lambda_m} = 4,965, отсюда немедленно получается:


        T \lambda_m = \frac{2 \pi \hbar c}{4.965 k} = b
.

Численная подстановка констант даёт значение для b=0,0028999 К·м, совпадающее с экспериментом, а также удобную приближенную формулу \lambda_{\max}T \approx 3000 \quad мкм·К. Так, солнечная поверхность имеет максимум интенсивности в зеленой области (0,5 мкм), что соответствует температуре около 6000 К.

Литература



Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Полезное


Смотреть что такое "Формула Планка" в других словарях:

  • формула Планка — Смотри закон излучения Планка (формула Планка) …   Энциклопедический словарь по металлургии

  • формула Планка — Planko formulė statusas T sritis fizika atitikmenys: angl. Planck’s formula vok. Plancksche Formel, f rus. формула Планка, f pranc. formule de Planck, f …   Fizikos terminų žodynas

  • Планка закон (излучения) — Формула Планка выражение для спектральной плотности мощности излучения абсолютно чёрного тела, которое было получено Максом Планком для равновесной плотности излучения u(ω,T). После того как вывод Релея Джинса для излучения абсолютно чёрного тела …   Википедия

  • Планка закон излучения — Формула Планка выражение для спектральной плотности мощности излучения абсолютно чёрного тела, которое было получено Максом Планком для равновесной плотности излучения u(ω,T). После того как вывод Релея Джинса для излучения абсолютно чёрного тела …   Википедия

  • ПЛАНКА ЗАКОН ИЗЛУЧЕНИЯ — (формула Планка), закон распределения энергии в спектре равновесного излучения при определённой темп ре Т. Был впервые выведен нем. физиком М. Планком (М. Planck) в 1900 на основе гипотезы о том, что энергия испускается дискр. порциями квантами.… …   Физическая энциклопедия

  • Планка закон излучения —         формула Планка, закон распределения энергии в спектре равновесного излучения (электромагнитного излучения (См. Излучение), находящегося в термодинамическом равновесии с веществом) при определённой температуре. Был впервые выведен М.… …   Большая советская энциклопедия

  • закон излучения Планка (формула Планка) — [Planck s radiation law] закон распределения энергии в спектре равновесного излучения при определенной температуре. Был впервые выведен немецким физиком М. Планком в 1900 г. на основе гипотезы о том, что энергия испускается дискретными порциями… …   Энциклопедический словарь по металлургии

  • Формула Зоммерфельда — Дирака — Движение электрона вокруг атомного ядра в рамках классической механики можно рассматривать как «линейный осциллятор», который характеризуется «адиабатичным инвариантом», представляющим собой площадь эллипса (в обобщенных координатах): где … …   Википедия

  • ПЛАНКА ПОСТОЯННАЯ — h, одна из универсальных числовых констант природы, входящая во многие формулы и физические законы, описывающие поведение материи и энергии в масштабах микромира. Существование этой константы было установлено в 1900 профессором физики Берлинского …   Энциклопедия Кольера

  • Закон Планка — Формула Планка выражение для спектральной плотности мощности излучения абсолютно чёрного тела, которое было получено Максом Планком для равновесной плотности излучения u(ω,T). После того как вывод Релея Джинса для излучения абсолютно чёрного тела …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»